
Version Control and Collaboration

Key Terms

• abstraction
• documentation
• comments
• Git
• commit

Overview
Collaboration is an integral part of computer science; part of programming is constant-
ly sharing and collaborating with peers. Sites like Facebook and Google are not written 
by one person. Rather, they require thousands of engineers, all working in teams to 
build specific pieces of the site. Furthermore, one team might rely on the code of many 
other teams. Effective collaboration is crucial.

Abstraction
The saying “too many cooks spoil the broth” alludes to the idea that too many people working on the same 
thing is counter-productive. In cooking, like in programming, one can largely avoid this issue through abstrac-
tion, by building large projects out of a set of smaller, self-contained sub-projects and assigning these sub-proj-
ects to different people.

In a restaurant, for instance, one person might make the appetizer, another might make the main course or 
dessert, and still another might wait the table. In code, a project might rely on many individual programs, with 
programs’ functions calling on still more library functions. The harmony that arises from the working together of 
many distinct parts is truly a beautiful thing! 

This is CS50.© 2018

CS50

Documentation and Comments
If abstraction requires breaking projects into smaller, independent pieces, documentation and comments allow 
engineers – and readers, more generally – to fit the pieces together. The man pages are one example of doc-
umentation: to use the library function strlen() from string.h, one shouldn’t need to look at its actual code. 
Instead, the library’s documentation acts as an executive summary, describing how and when to use a product, 
in this case strlen().

There are cases in which looking at original code is useful or necessary. For these, comments in the code ex-
plaining what it does are incredibly important. These can make debugging one’s own code or that of others 
much easier. Similarly, if we wanted to create a slightly different product based on someone else’s code, clear 
and comprehensive comments would also be valuable. To promote consistency and clarity, best practices often 
instruct the use of a common style within a project or an organization. 

Version Control and Git
There are many tools that enable coding collaboration, the most popular of which is a file tracking system called 
Git. The Git workflow is divided into three stages. First, we work on files in our working directory. Then, we pick 
what changes we want to store and add those to our staging area (also known as index). Finally, we commit 
those changes, which means that a “snapshot” of our project is stored in our repository (.git directory). Git also 
features branches – copies of a master project – that allow programmers to experiment with changes without 
actually affecting the original project. 

Many version control systems save data as 
changes relative to the original files. Git works 
differently by saving “snapshots” of the entire 
project every time we commit. The diagram at 
right shows these “snapshots,” or versions, over 
time. So version 2 represents our repository 
after our first commit. From this “snapshot,” we 
can see we only made changes to files B and C. 
When files have not changed, Git links back to 
the previous file commit. That’s denoted here 
with a lighter gray color, as is the case with file 
A in version 2.

version 1 version 2 version 3 version 4

A A A1 A1

B B1 B2 B3

C C1 C1 C1

“snapshots” over time

fi
le

 c
o

m
m

it
s


