
Key Terms

• ncurses
• text-based user

interface
• API
• header file

Overview
ncurses is a C library for writing text-based user interfaces that runs portably across
various terminals and terminal emulators. ncurses conceives of the terminal screen as a
grid of (y, x) character positions, where y counts rows down from the top of the screen
and x counts rightwards. It provides an application programing interface (API), which is
a series of functions for manipulating the terminal screen. Hundreds of terminal-based
applications use ncurses.

Using ncurses
To use functions from any library in C, we need to #include the header file at the top of our source code file.
In this case, we’ll use #include <ncurses.h>. When compiling our code, we’ll also have to link the library (with
-lncurses when working with ncurses, typcially in a file called a Makefile, which tells make what to do) so that the
resulting object code knows how to execute the functions.

This is CS50.© 2018

Some Common ncurses Functions
initscr() takes no arguments, but, as a side effect, initializes all the appropriate data structures and flushes the
screen.
endwin() is the antidote to initscr, this time quitting `ncurses` and returning the terminal window to its state
preceeding the program.
getch() takes no input, but returns a character typed in at runtime by the user.
move() moves the cursor to a (y, x) position on the screen.
addch() adds a character at the cursor's location.
mvaddch() takes a (y, x) position and a character, combining the above two functions into one.
mvaddstr() takes a (y, x) position and a string, writing the start of the string at that position and going right-
wards.

CS50

An example
In the code below, we first initialize ncurses with initscr(). Then we use raw() to prevent the terminal from buff-
ering the characters that a user may type. That way, the progam can detect as soon as a user types even a single
character.

1 // initialize ncurses
2 initscr();
3 raw();
4
5 for (int i = 0; i < 10; i++)
6 {
7 move(i, i + 2);
8 addch('*');
9 mvaddstr(i, i + 11, "/////");
10 mvaddch(i, i + 24, '*');
11 }
12 // quit on any input
13 getch();
14
15 // close ncurses
16 endwin();
17 return 0;

 * ///// *
 * ///// *
 * ///// *
 * ///// *
 * ///// *
 * ///// *
 * ///// *
 * ///// *
 * ///// *
 * ///// *

The for loop takes care of
each line in the diagonal,
one by one. Notice how
we can use move and ad-
dch equivalently to mvad-
dch. For entire strings, the
mvaddstr function can be
used.

Notice how we place the
characters or strings at
(y, x) indices, where y
counts rows down and x
counts rightward.

This different coordinate
system makes more sense
for programs that read
left to right, top to bot-
tom.

$ make diagonal
$./diagonal

ncurses

